Study of the Interactions between MoO_3 and α -Fe₂O₃

Lin Dong, Kaidong Chen, and Yi Chen¹

Chemistry Department, Nanjing University, Nanjing 210093, China

Received February 16, 1996; in revised form October 15, 1996; accepted November 4, 1996

 α -Fe₃O₃-supported molybdenum catalysts were prepared by heating a mixture of MoO₃ and α -Fe₂O₃. XRD, XPS, LRS, FT-IR, and Mössbauer spectroscopy were used to study the interactions between MoO₃ and α -Fe₂O₃. At the temperature of 693 K, the dispersion capacity of MoO₃ on α-Fe₂O₃ determined by XRD and XPS is 0.80 mmol MoO₃/100 m² α-Fe₂O₃, i.e., 4.8 Mo⁶⁺/nm². LRS and FT-IR results show that at low MoO₃ loading (1.8 Mo⁶⁺/nm²), Mo⁶⁺ cations are located in the tetrahedral sites of the α -Fe₂O₃ surface. The occcupation of octahedral surface vacant sites increases with the MoO₃ loading. Considering the fact that each Mo⁶⁺ is accompanied by 3O² anions and that α -Fe₂O₃ has a hexagonal structure, almost all the incorporated Mo⁶⁺ on the surface are in octahedral coordination environment. Based on the assumptions that the (001) plane of α -Fe₂O₃ is preferentially exposed on the surface and that all the usable surface vacant sites have been occupied, the formation of a close-packed layer on the α -Fe₂O₃ surface by the O²⁻ anions linked with the incorporated Mo⁶⁺ can be expected, which is in good agreement with the result predicted by the incorporation model proposed previously. A relationship between the residual bulk MoO₃ and the calcination time shows that Mo⁶⁺ ions occupy the surface vacant sites of α -Fe₂O₃ in two stages. The first stage may correspond to the migration of Mo⁶⁺ cations from the bulk MoO₃ to the tetrahedral surface vacant sites on the surface. The second stage may correspond to the migration of Mo⁶⁺ from the bulk MoO₃ into the octahedral unoccupied vacant sites. Mössbauer spectroscopy and XRD results indicate that a new phase, Fe₂(MoO₄)₃, is formed when the sample containing 10.0Mo⁶⁺/nm² α -Fe₂O₃ was calcined at 743 K, suggesting that the calcination temperature is important to the interaction extent between MoO₃ and α -Fe₂O₃. \odot 1997 Academic Press

INTRODUCTION

Metal oxide–support interactions have attracted much attention because of the wide application of supported metal-oxide systems. It has been well documented that under appropriate conditions many metal oxides, such as MoO_3 , WO_3 , NiO, ZnO, MgO, and CdO, can be dispersed on the surfaces of supports like γ -Al₂O₃, TiO₂, ZrO_2 , and

zeolites, Xie and Tang (1) were the first to claim that the monolayer dispersion of many metal oxides on γ -Al₂O₃ could be realized simply by the calcination of mixtures at \sim 723 K. Measurements of the dispersion capacity of many oxides, i.e., the maximum amount of automatically dispersed metal oxides without the existence of a bulk phase, by different experimental methods such as XRD (X-ray diffraction), XPS (X-ray photoelectron spectroscopy), and ISS (ion scattering spectroscopy) led them to explain the dispersion capacities of some metal oxides on γ -Al₂O₃. The dispersion process has been described by Knözinger as the wetting of the γ -Al₂O₃ surface by metal oxides (2). It has also been commonly accepted that interactions between γ -Al₂O₃ and the dispersed species are inevitable. In fact, it has been shown that the coordination environment of the dispersed metal cations is strongly dependent upon their loading amount as well as the calcination conditions used (3, 4). Therefore, strong impact of these factors on the properties (e.g., reducibility, magnetic properties, and catalytic activity) of γ -Al₂O₃-supported metal-oxide systems can be expected.

According to the surface structure of γ -Al₂O₃, the valence states of the supported metal oxides and the dispersion capacities of the metal oxides supported on γ -Al₂O₃, Chen and Zhang proposed a surface interaction model—"incorporation model" (5). They reported that under appropriate experimental conditions, the interaction between many metal oxides and γ -Al₂O₃ could be described by the model (5–7), assuming that the (110) plane is preferentially exposed on the surface of γ -Al₂O₃. The experimental results that support the model are the dispersion capacities of oxides containing M^+ (Li⁺), M^{2+} , and M^{6+} cations and the relationship between the coordination environment of Ni²⁺ and Mo⁶⁺ and the loading amount of these metal oxides supported on γ -Al₂O₃. The following facts in the systems of supported metal oxides can be explained by the model.

(1) NiO, MgO, ZnO, and CdO have the same dispersion capacity, i.e., 9.0–9.8 M^{2+} ions/nm² γ -Al₂O₃ (5), while Li₂O has 11.4–12.0 Li⁺ ions/nm² γ -Al₂O₃ (7).

(2) The dispersion capacities for MoO_3 and WO_3 are also the same, i.e., 4.5–5.3 M⁶⁺ ions/nm² γ -Al₂O₃ (1, 5).

(3) The dispersion capacities of NiO and MoO_3 on SiO_2 are very low (1, 5).

¹ To whom correspondence should be addressed.

In this paper, another support, α -Fe₂O₃ with a large BET specific surface area (Hematite, 58 m²/g), has been selected as a support to study the interaction between MoO₃ and α -Fe₂O₃ and to examine if the incorporation model can be used to discuss the dispersion capacity and the coordination environment of Mo⁶⁺ on the surface of the α -Fe₂O₃ support.

EXPERIMENTAL

Sample Preparation

The α -Fe₂O₃ support was calcined at 823 K for 5 h before it was used as the support to prepare MoO₃/ α -Fe₂O₃ samples.

 MoO_3/α -Fe₂O₃ samples were prepared by calcination of a series of mixtures of MoO₃ and α -Fe₂O₃ with different amounts of MoO₃ at 693 K in air for 24 h.

Instrumentation

XRD (X-ray diffraction) patterns were recorded using a Shimadzu XD-3A X-ray diffractometer with the FeK α radiation (0.1979 nm) and a Mn filter. α -Al₂O₃ powder was used as a reference for quantitative analysis.

A V.G. Escalab MK II system was used to record XPS spectra for determining the dispersion capacity of MoO_3 supported on α -Fe₂O₃.

Laser Raman spectra (LRS) were recorded in air with a Spex Ramalog-1403 spectrometer equipped with a triple monochrometer. The 5145 Å line of a Spectra Physics Model 2000 Ar⁺ laser was used for excitation. A laser power of 20 mW at the sample was applied. The spectral slit width was 300 nm, the wave-number accuracy being $\pm 2 \text{ cm}^{-1}$. To obtain the distinctive spectra, MoO_3/α -Fe₂O₃ samples have been thoroughly mixed and diluted with KBr before being pressed as disks. The same method has been used in FT–IR experiments also. All the IR spectra were taken with a Nicolet-510p FT–IR spectrometer with $\pm 2 \text{ cm}^{-1}$ resolution. Using the digital subtraction capability of the spectrometer, the support spectrum was subtracted from the sample spectra to obtain only the spectra of Mo oxide on the surface.

Mössbauer spectra were obtained with a constant-acceleration spectrometer using a 10 mCi⁵⁷ Co/Pd source. All spectra were computer fitted with Lorentzian line shapes using a least-squares fitting procedure, and the isomer shifts (IS) are given with respect to the centroid of α -Fe at room temperature.

RESULTS AND DISCUSSION

I. Structure of α -Fe₂O₃

 α -Fe₂O₃ (Hematite) is hexagonal and has the same structure as α -Al₂O₃ and α -Cr₂O₃ (8, 9). Its bulk structure can be described as a slightly distorted closest-packed array of

O o²⁻ **(b)** Fe³⁺ **FIG. 1.** Structure of the α -Fe₂O₃ (001) plane. oxygens with Fe³⁺ filling two-thirds of the octahedral sites. The (001) face is the most likely crystal plane to predominate in the external surface of these supports (8). The structure of the (001) plane is shown in Fig. 1. It can be seen that

4 vacant sites exist in a surface unit mesh of this plane, of

which one-forth are octahedral sites and the others tetrahedral sites. If the radius of O^{2-} is taken as 0.14 nm, the

II. The Surface Interaction between MoO_3 and α -Fe₂O₃ at 693 K

area of a mesh is about 0.203 nm^2 .

Figure 2 shows the XRD patterns of a series of MoO_3/α -Fe₂O₃ samples with different Mo loadings before and after heat treatment at 693 K for 24 h. All the mixtures referred to in Fig. 2 (A, B, and C) show sharp peaks of crystalline MoO₃ $[2\theta: 29.46^{\circ} (110); 32.52^{\circ} (040); 34.58^{\circ} (021)]$. But for the low MoO_3 content samples (A and B: 1.8 and 4.2 Mo^{6+}/nm^2 α -Fe₂O₃), after being heated at 693 K, a temperature well below the melting point (1068 K) of MoO₃, the peaks of crystalline MoO₃ disappeared and the XRD patterns resemble that of the pure α -Fe₂O₃ support (D). The crystalline phase of MoO₃ has vanished but the support has remained unchanged. The experiments indicate that MoO₃ is well retained by the sample and does not escape from the sample because it did not matter whether the mixture was heated in an open or a sealed glass tube. It is also very unlikely that the crystalline phase of MoO₃ transforms into an amorphous phase upon the heat treatment. So it seems that the only reasonable answer is that MoO₃ has dispersed on the surface of the support. However, when the content of MoO_3 in the sample exceeds a critical amount (dispersion capacity), the peaks of crystalline MoO₃ do not disappear, but are markedly reduced after the heat treatment. The XRD pattern of the mixture containing 10.0 Mo⁶⁺/nm² α -Fe₂O₃ is shown in Fig. 2C. After the mixture has been heated at 693 K for 24 h, the pattern C changes into C', in which the

FIG. 2. XRD patterns for MoO_3/α -Fe₂O₃ samples containing different Mo loadings: A, mixture of 1.8 $Mo^{6+}/nm^2\alpha$ -Fe₂O₃; A', sample A after a heat treatment at 693 K for 24 h; B, mixture of 4.2 $Mo^{6+}/nm^2\alpha$ -Fe₂O₃; B', sample B after a heat treatment at 693 K for 24 h; C, mixture of 10.0 $Mo^{6+}/nm^2\alpha$ -Fe₂O₃; C' sample C after a heat treatment at 693 K for 24 h; D, α -Fe₂O₃ of a specific surface (58m²/g).

peaks of crystalline MoO_3 are present, but with reduced intensity, indicating that some residual crystalline MoO_3 remains. This XRD pattern does not change with increasing heating time. It suggests that heating at this temperature only causes MoO_3 to disperse onto the surface of α -Fe₂O₃ but not to diffuse into or react with the bulk α -Fe₂O₃.

Figure 3 shows the relationship of residual crystalline MoO_3 versus total amount of MoO_3 in MoO_3/α -Fe₂O₃. The amount of residual crystalline MoO_3 can be determined by XRD quantitative phase analysis (1). When the content of MoO_3 in the samples is below the dispersion capacity, no crystalline MoO_3 can be detected. But if the MoO_3 content exceeds this value, the residual MoO_3 increases with the total amount of MoO_3 as shown in Fig. 3 by the straight line. This straight line does not go through the origin but gives an intercept corresponding to the maximum dispersion capacity. In an ideal case the slope of this line is unity. The present results show that the dispersion capacity of MoO_3 supported on α -Fe₂O₃ is 4.8 Mo^{6+}/nm^2 or 0.97 $Mo^{6+}/mesh$.

The Mo_{3d}/Fe_{2p} XPS intensity ratio as a function of bulk Mo content for MoO_3/α -Fe₂O₃ samples is shown in Fig. 4. It increases linearly up to the Mo content of 4.8 $Mo^{6+}/nm^2\alpha$ -Fe₂O₃. Obviously, the heat treatment has caused MoO₃ to disperse on the surface of α -Fe₂O₃, thus producing a stronger XPS signal. A similar phenomenon

FIG. 3. Residual amount of MoO_3 versus total amount of MoO_3 in MoO_3/α -Fe₂O₃ samples after heating at 693 K for 24 h.

has been reported by Knözinger and Taglauer (10) and by Gui *et al.* (11). Beyond that content, a turning point appears, which corresponds to the dispersion capacity for MoO₃ on α -Fe₂O₃, (0.8 mmol MoO₃/100m² α -Fe₂O₃ or 4.8 Mo^{6+/} nm² α -Fe₂O₃). The Mo/Fe intensity ratio at Mo loadings exceeding 4.8 Mo^{6+/}nm² α -Fe₂O₃ increases more slowly than for lower loadings. This indicates that crystalline MoO₃ exists in the samples besides the surface Mo⁶⁺ species. This result is in good agreement with that of the XRD. However, it should be mentioned that XPS peak intensities are influenced mainly by the surface concentration and to

FIG. 4. XPS peak intensity ratio I_{Mo3d}/I_{Fe2p} versus the content of MoO₃ in MoO₃/ α -Fe₂O₃ samples after a heat treatment at 693 K for 24 h.

FIG. 5. Raman spectra of MoO_3/α -Fe₂O₃ (calcined at 693 K for 24 h) as a function of Mo loading (in Mo^{6+}/nm^2): A, 1.8; B, 4.1; C, 7.9; D, pure MoO_3 . The intensity scale of profile C is one third of that of profiles A and B.

some extent by other factors such as physical properties of supports, especially pore-size distribution and the particle size of the metal oxide. Nevertheless, in our case, the changes in surface areas and pore-size distribution measured were insignificant, indicating that they cannot be responsible for the distinctive change in the slope of the intensity ratio versus loading line.

Figure 5 shows a representative number of LRS spectra for the samples after calcination, which provide valuable information concerning the formation of different surface species as a function of molybdenum loading. In spectra A–C, it is likely to assume that the peak 939 cm^{-1} corresponds to Mo⁶⁺ incorporated into octahedral surface sites, and peaks 880 and 815 cm⁻¹ may correspond to the occupation of Mo⁶⁺ into tetrahedral surface sites (12-14). In spectrum A, the peak 939 cm^{-1} has not been observed, this can be ascribed to the predominant tetrahedral vacant sites on the surface, which may result from the more tetrahedral vacant sites on the (001) plane, i.e., Tet/Oct = 3:1. With the increases of MoO_3 from 1.8 to 4.1 Mo^{6+}/nm^2 , the intensity of the 939 cm^{-1} peak is increased, indicating that there are more octahedral surface sites being occupied. It is reasonable to suggest that with increasing MoO₃ loading more Mo^{6+} species (peaks 880 and 815 cm⁻¹) are incorporated into the octahedral surface vacant sites (peak 939 cm^{-1}).

Figure 6 shows the FT–IR spectra. There are only two weak peaks at 949 and 930 cm⁻¹ for the low Mo-content sample (Fig. 6A). According to the results reported by Ng (12), these two peaks may be assigned to surface Mo species. With increasing MoO₃ loading, the peak intensity of the band at 949 cm⁻¹ grows and the characteristic peak (998 cm⁻¹) representing the bulk MoO₃ appears. IR spectra show that at low Mo loading (1.8 Mo^{6+}/nm^2), octahedrally coordinated Mo^{6+} surface species are formed by the incorporation of Mo^{6+} into tetrahedral and octahedral surface vacant sites. However, at high MoO_3 loadings, more of the

FIG. 6. Infrared spectra of calcined MoO_3/α -Fe₂O₃ (at 693 K for 24 h) as a function of loading ($Mo^{6+}/nm^2\alpha$ -Fe₂O₃): A, 1.8; B, 4.1; C, 7.9; D, pure MoO_3 .

FIG. 7. The amount of dispersed MoO_3 (or residual MoO_3) in MoO_3/α -Fe₂O₃ versus calcination time at 693 K.

later species (wavenumber 949 cm^{-1}) are formed. These results are basically in agreement with those obtained by LRS.

Regarding the relationship between the dispersed MoO_3 (or residual MoO_3 , determined by XRD) and the heattreatment time, an interesting result is shown in Fig. 7, which indicates that the whole dispersion procedure at this temperature (693 K) includes three stages. In the initial stage the dispersion proceeds slowly (represented as line AB), followed by a slightly faster process (line BC), and finally the dispersed (or residual) MoO₃ amount remains unchanged. Point C corresponds to the dispersion capacity of MoO₃ on α -Fe₂O₃, which is consistent with the results obtained by the XRD and XPS quantitative analyses. It indicates that at this temperature the dispersion process completes in about 6.2 h, and which can be symbolized as:

Heat treatment less than 6.2 h

 MoO_3 (bulk phase) $\rightarrow MoO_3$ (surface species)

Heat treatment more than 6.2 h

 MoO_3 (bulk phase) $\rightleftharpoons MoO_3$ (surface species)

For the different slopes of lines AB and BC, considering the results from LRS and FT–IR, it is likely that these correspond to the different stages in the formation of dispersed surface Mo^{6+} species. It is suggested that in stage AB, Mo^{6+} migrates into tetrahedral sites on the support's surface. From point B to C, Mo^{6+} from bulk MoO_3 starts migrating into the octahedral sites on the surface. These suggestions are in good agreement with the results of LRS and FT–IR. Figure 8 shows the dispersion process of MoO_3 on α -Fe₂O₃ as discussed above. It can be seen that when all the usable vacant sites are occupied, a close-packed capping O^{2-} layer is formed.

FIG. 8. A scheme for the dispersion process of MoO_3 supported on α -Fe₂O₃ at 693 K. (a) Heat treatment less than 4.5 h. (b) Heat treatment close to 6.2 h.

FIG. 9. Room-temperature Mössbauer spectra of a MoO_3/α -Fe₂O₃ sample containing 10.0 Mo⁶⁺/nm²\alpha-Fe₂O₃ calcined at different temperatures: a, pure α -Fe₂O₃; b, 693 K; c, 743 K.

III. Influence of Temperature on the Interaction Extent between MoO_3 and α -Fe₂O₃

Mössbauer spectroscopy and XRD have been used to study the effect of the temperature on the interaction between MoO₃ and α -Fe₂O₃. The Mössbauer spectra of a sample (MoO₃ content, ca. 10.0Mo⁶⁺/nm² α -Fe₂O₃) calcined at different temperatures are shown in Fig. 9. The corresponding Mössbauer parameters are listed in Table 1. Only a sextet which is similar to that of α -Fe₂O₃ is observed for the sample calcined at 693 K. For the sample calcined at 743 K, the Mössbauer spectrum is composed of a sextet from α -Fe₂O₃ and a singlet which is assigned to Fe₂(MoO₄)₃ (15), indicating that a new phase Fe₂(MoO₄)₃ has formed. This result is consistent with that of the XRD as shown in Fig. 10. It is also pertinent to note that the hyperfine field of α -Fe₂O₃ for the sample MoO₃/ α -Fe₂O₃ after

TABLE 1 Mössbauer Parameters of α-Fe₂O₃ and MoO₃/α-Fe₂O₃ Treated at Different Temperatures

			-		
Sample	Treatment	IS (mm/s)	QS (mm/s)	H (kOe)	Iron species
α-Fe ₂ O ₃	823 K	0.39	-0.17	509	α-Fe ₂ O ₃
MoO_3/α -Fe ₂ O ₃	693 K	0.42	-0.12	506	α -Fe ₂ O ₃
MoO_3/α - Fe_2O_3	743 K	0.47 0.51	$-0.18 \\ 0.00$	483 0.00	α -Fe ₂ O ₃ Fe ₂ (MoO ₄) ₃

treated at 743 K is only 483 KOe and much smaller than the 509 KOe of pure α -Fe₂O₃. We think that the main reason leading to this phenomenon may be the decrease of the α -Fe₂O₃ particle size due to the formation of Fe₂(MoO₄)₃ phase. Künding et al. (16) studied some properties of small α-Fe₂O₃ particles by Mössbauer spectroscopy and they confirmed that some properties of α -Fe₂O₃ changed with the particle size. For example, the hyperfine field of bulk phase α -Fe₂O₃ measured at room temperature is ca. 518 KOe. With the decrease of the particle size, the hyperfine field decreased too. For the α -Fe₂O₃ particles with diameter ca. 18 nm, the hyperfine field becomes 503 KOe. When the particle size is less than 13.5 nm, the room temperature spectrum consists only of a quadrupole-split center line corresponding to superparamagnetic α -Fe₂O₃. In our work, the average particle size of pure α -Fe₂O₃ is about 20–30 nm, hence the hyperfine field is only ca. 509 KOe and is less than the ca. 518 KOe of bulk phase α -Fe₂O₃. After the sample MoO_3/α -Fe₂O₃ is treated at 743 K, MoO_3 and some α - Fe_2O_3 form $Fe_2(MoO_4)_3$ phase, and therefore the α - Fe_2O_3 particle sizes decrease because some iron oxide is consumed in forming the $Fe_2(MoO_4)_3$ phase. This may lead to the change of the Mössbauer parameters of α-Fe₂O₃. From the above results, we can conclude that the interaction between

FIG. 10. XRD patterns of MoO_3/α -Fe₂O₃ sample containing $10.0Mo^{6+}/nm^2\alpha$ -Fe₂O₃ before (A, B) and after heating at 693 K (A') and 743 K (B'), respectively.

MoO₃ and α -Fe₂O₃ is significantly affected by the calcination temperature. MoO₃ disperses on the surface of α -Fe₂O₃ at 693 K, but if the calcination temperature increases to 743 K, the solid-state reaction between MoO₃ and part of the α -Fe₂O₃ occurs and the Fe₂(MoO₄)₃ phase is formed.

CONCLUSIONS

(1) At 693 K, the dispersion capacity of MoO_3 supported on α -Fe₂O₃ determined by XRD and XPS is 4.8 Mo⁶⁺/nm². With the assumption that (001) plane is preferentially exposed on the surface of α -Fe₂O₃, the capping oxygen anions linked with the incorporated Mo⁶⁺ form a close-packed layer, which is in agreement with the result predicted by the incorporation model.

(2) LRS and FT-IR results show that, at low Mo concentration, Mo⁶⁺ cations locate in tetrahedral sites of the surface of α -Fe₂O₃ support, and the occupation of the octahedral surface sites increases with the Mo loading. Taking into consideration that each incorporated Mo⁶⁺ is accompanied by $3O^{2-}$ anions, almost all the Mo⁶⁺ cations are located in octahedral sites. The relation between the calcination time and the dispersed (or residual) MoO₃ amount shows that the incorporating process of Mo⁶⁺ onto the surface vacancies of α -Fe₂O₃ develops in three stages. In the first stage, Mo⁶⁺ cations enter the tetrahedral surface vacant sites. In the second stage, Mo⁶⁺ cations migrate from the bulk MoO₃ phase into the surface octahedral vacancies. When the usable surface sites have been completely filled the dispersed MoO₃ amount remains unchanged and reaches a balance between the dispersion and crystallization of MoO₃.

(3) Mössbauer spectra and XRD results show that at 743 K MoO₃ reacts with α -Fe₂O₃ to form a bulk compound

Fe₂(MoO₄)₃, indicating that the temperature significantly affects the interaction extent between MoO₃ and α -Fe₂O₃.

ACKNOWLEDGMENTS

This work was supported, in part, by the National Natural Science Foundation of China under Grant 9287010. The authors acknowledge the help of Professor Bing Zhong for supplying the α -Fe₂O₃ support with large surface area and the valuable discussions with Professors Jianyi Shen, Zheng Hu, and Yining Fan.

REFERENCES

- 1. Y. C. Xie and Y. Q. Tang, Adv. Catal. 37, 1 (1990)
- H. Knözinger, in "Proceedings, 9th International Congress on Catalysis, Calgary," Vol. 5, p. 20. Chem. Institute of Canada, Ottawa, 1988.
- D. S. Zingg, L. E. Makovsky, R. E. Tischer, F. R. Brown, and D. M. Hercules, J. Phys. Chem. 84, 2898(1980).
- L. W. Burggraf, D. E. Leyden, R. L. Chin, and D. M. Hercules, J. Catal. 78, 360 (1982).
- 5. Y. Chen and L. F. Zhang, Catal. Lett. 12, 51 (1992).
- Y. Chen, L. F. Zhang, J. F. Lin, and Y. S. Jin, "Catalitic Science and Technology," Vol. 1, p. 291. Kodansha, Tokyo, 1991.
- 7. L. F. Zhang and Y. Chen, J. Solid State Chem. 97, 292 (1992).
- 8. H. Knözinger, Adv. Catal. 25, 185 (1976).
- M. F. Hochell, JR, C. M. Eggleston, V. B. Elings, G. A. Parks, G. E. Brown, JR, C. M. Wu, and K. Kjoller, Am. Mineral. 74, 1233 (1989).
- H. Knözinger and E. Taglauer, *in* "Catalysis," (J. J. Spivey and S. K. Agarwal, Eds.), Vol. 10, p. 1. A specialist periodical report, The Royal Society of Chemistry, Cambridge, 1993.
- L. Gui, Y. Liu, Q. Guo, H. Huang, and Y. Tang, *China Sci. B* 6, 509 (1985).
- 12. K. Y. S. Ng and E. Gulari, J. Catal. 92, 340 (1985).
- S. R. Stampfl, Y. Chen, J. A. Dumesic, C. M. Niu, and C. G. Hill, JR, J. Catal. 105, 445 (1987).
- J. Leyrer, B. Vielhaber, M. I. Zaki, Zhuang Shuxian, J. Weitkamp, and H. Knözinger, *Mater. Chem. Phys.* 13, 301 (1985).
- 15. H. L. Zhang, J. Y. Shen, and X. Ge, J. Solid State Chem. 117, 127 (1995).
- W. Kündig, H. Bömmel, G. Constabaris, and R. H. Lindquist, *Phys. Rev.* 142, 327 (1966).